
Automatic synthetic benchmark 
generator for hardware security 

 

 
 

Background: Research in computer science and engineering requires data for evaluation. These data 

should be consistent, organized and non-biased to serve a base line for evaluation of tools, algorithms 

and general research. In particular, hardware security and reverse engineering needs benchmarks for 

research and evaluation. Recently, with the introduction of machine learning to these fields, an 

additional important use of benchmarks has emerged, which is training set. For example, detection of 

familiar structures within a logical circuit can be done using a Graph-Neural Network (GNN), which is 

trained with examples of such structures. 

However, number of logical circuits openly available is limited and therefore cannot serve a sound base 

for training. The industry needs a way to obtain benchmarks in large amounts. A possible solution is 

creating synthetic benchmarks based on some reference authentic examples and functionally ‘similar’ 

to them. 

 

Project Description: In this project, the students will build a tool that generates synthetic benchmarks. 

The tool will get at its input a reference benchmark and provide a set of synthetic benchmarks ‘similar’ 

to the reference. Since functional similarity is more a perceptional than a scientific term, it will be 

achieved in an indirect way. For that, the original circuit will be first converted to an AND-Inverter 

graph. This graph will be structurally modified using graph algorithms under constraints. The modified 

graph will be converted back to the original gate library. Logic synthesis tools, such as Synopsys 

Design Compiler can be used to perform the conversion, while the graph manipulation can be done 

using Python with the relevant graph algorithm packages. 

Possible continuation of the project is evaluation of the quality of the tool by using the generated 

benchmarks to train a real GNN to detect subcircuits. 

In the course of the project, the students will acquire knowledge logic synthesis, circuit analysis and 

graph algorithms. 

 

Prerequisites: Logic Design, Algorithms, Machine Learning (recommended), Lab 1. 

 

 

Supervisor: Leonid Azriel (leonida@technion.ac.il) 


